Lockheed Martin Low-Cost F-35 Simulator

Senior Design Team 514

Francisco Lopez

Meet the Team

Jonah Gibbons Electrical & Manufacturing Engineer Laiken Kinsey Test Engineer & Project Manager

Francisco Lopez Mechanical & Product Design Engineer Branden Pacer Mechanical Engineer & Gimbal Designer Will Rickles Mechatronics Engineer Emelia Rodriguez Research Engineer

Francisco Lopez

Sponsor and Advisor

Andrew Filiault Mechanical Engineer, B.S. JSF F-35 Pilot Training and Training Infrastructure Systems

Brandon Krick Mechanical Engineer, Ph.D. Associate Professor

Francisco Lopez

Project Objective

The objective of this project is to create low-cost F-35 flight controls that integrate with Lockheed Martin's simulator software to be used in the pilot training program

Francisco Lopez

4

3D Printed Cockpit and Desktop Simulator

Pilots train in simulators to develop muscle memory and learn the unique operating procedures of the aircraft

3D Printed Cockpit

Simulator Training Flight

Desktop Simulator

Francisco Lopez

Rudder Pedal System

- Rudder Pedal System (RPS):
 Controls the jet rudders, nose wheel steering and rear wheel brakes
- Initially developed by a previous senior design team, we integrated this RPS with minor modification

Francisco Lopez

HOTAS System

- HOTAS: Hands on Throttle and Stick
- Throttle: Controls the thrust from the jet engine
- Stick: Controls the pitch and roll axes of the aircraft
- Some aspects of the HOTAS from previous senior design team were incorporated in our version

Francisco Lopez

Key Goals

Create finished, working prototype

Integrate physical sub-systems into the simulation software Keep manufacturing costs low Design for use in desktop or cockpit training models

Flight Control Functions

Pilot Interface

 Controls closely mimic F-35 look and feel

Mechanical parts will withstand repeated use

Communicate to Software

- Controller position awareness
- Negligible input delay
- Simulated jet accurately responds to control inputs

Critical Targets

Will Rickles

10

Additional Targets

Will Rickles

Department of Mechanical Engineering

DoD Design Criteria Standard MIL-STD-1472H 5.1.4.2.2.2.9
 DoD Design Criteria Standard MIL-STD-1472H 5.1.4.2.2.1.6

Final Design Selection

- Stick: 2-axis gimbal, rotary sensors, custom USB microcontroller
- Throttle: linear square rail, rack and pinion with rotary sensor, custom USB microcontroller
- Rudder Pedal System: updated rotary sensors, custom USB microcontroller

Final Design Selection

- Stick: 2-axis gimbal, rotary sensors, custom USB microcontroller
- Throttle: linear square rail, rack and pinion with rotary sensor, custom USB microcontroller
- Rudder Pedal System: updated rotary sensors, custom USB microcontroller

Final Design Selection

- Stick: 2-axis gimbal, rotary sensors, custom USB microcontroller
- Throttle: linear square rail, rack and pinion with rotary sensor, custom USB microcontroller
- Rudder Pedal System: updated rotary sensors, custom USB microcontroller

Creating CAD Designs

Department of Mechanical Engineering

*2012 Anthropometric Survey of U.S. Army Personnel TR-15/007

15

Throttle Mechanism

- Rack and pinion utilized to sense linear displacement
- Nylon screw in slider attachment provides adjustable resistance
- Linear square rail resists axial moment

Throttle Prototype

Prototype Results

- Rack and pinion are 3D printed
- Welded steel enclosure with a removable lid
- Wires are constrained to left side of box

Joystick Mechanism

- Gimbal allows motion within target angle of deflection
- Single wave spring provides joystick resistance
- Wave springs reduce overall height of stick

Joystick Mechanism

- Challenges creating smooth joystick control
 - Contact surfaces
 - Spring force and deflection
 - Integrating large rotary sensors
 - Centering of gimbal

13.5" Neutral Height

Joystick Prototype

Results:

- Does not create distraction
- Rotary sensors have plenty of wire clearance
- Options available for increased resistance

Electronics Design

Constraints

- Lots of buttons, switches, and rotary sensors need to connect to the simulator
- Communication must be fast
- Compatible with lots of computers
- Requested not to use Arduino as previous teams did

Electronics Solution

PIC microcontroller:

- → 40 connection pins to use
- → 13 analog-to-digital channels
- → Powered by USB port
- Low-cost

Custom firmware:

- Code written specifically to process our signals and transmit them efficiently over USB
- Custom printed circuit board:
 - Built to match our exact needs for circuit components

Jonah Gibbons

Universal Serial Bus (USB)

- Designed to be plug-andplay solution for any electronic device
- Capable of high-speed data transfer
- Generic drivers are standard on computers now

- 732 lines of code not including USB header files
- Written and compiled using Microchip's MPLAB X software

Custom Printed Circuit Board

Creating our own PCB from scratch allowed us to design it for our exact needs

Custom Printed Circuit Board

✤ 5-layer design

- → Separate signal layers
- Sandwich traces between ground planes to reduce signal noise (electro-magnetic interference)

Same layout used for all 3 controllers

Methods of Validation

Laiken Kinsey

27

Joystick Validation

Angle of deflection

- 🛶 Goal: 13°
- Backward: 13.9°
- → Left: <mark>14.7°</mark>
- → Right: <mark>13.3°</mark>
- Resistance to deflection
 - → Goal: <7.5 lbf
 - Pitch: 1.3 lbf
 - 🗻 Roll: 🛛 <mark>1.5 lbf</mark>
- *
- Downward Force Test
 - Highest tested: 24.2 lbf

Throttle Validation

Travel Distance
 Goal: 6 in
 Distance: 6.06 in
 Resistance to motion
 Goal: <7.5 lbf
 Resistance: 0.75 lbf
 Downward Force Test
 Highest tested: 26.5 lbf

RPS Validation

RPS Weight
 Goal: <35 lbs
 Weight: 25 lbs
 Force of deflection
 Goal: <15 lbf
 Left pedal: 11.2 lbf
 Right pedal: 13.5 lbf

Latency and Bit Rate

★ Latency
▲ Goal: 20 ms → 350 ms
▲ Average: 180 ms
♦ Bit Rate

Slow Motion Video

Emelia Rodriguez

Emelia Rodriguez

34

Summary

Objective

- Create F-35 controls for low-cost simulation training
- **Targets**
 - Working desktop prototype created within \$2000 limit
- > Design
 - Two subsystems built new, RPS improved
- Outcome
 - Flight tests have been successful, and system is fully integrated

Emelia Rodriguez

Final Demonstration

Demonstrations completed: → Normal Takeoff and Landing Short Takeoff and Landing → Vertical Takeoff and Landing Aerobatic Flight Maneuvers

Emelia Rodriguez

Lessons Learned

Be sure to assemble prototypes early so there is ample time for adjustments or redesigns Defend your ideas but remain flexible and open-minded toward necessary changes

With multiple iterations, version control is essential when collaborating on parts with teammates Joining 3D prints together can be tricky, so plan for wide tolerances and other ideas like hardware

Parts lock up, wear out, and break, so budget for maintenance as well Keep tabs on everything because having a broader project awareness speeds everything up

Emelia Rodriguez

Questions?

Emelia Rodriguez

38

THIS SLIDE LEFT INTENTIONALLY BLANK

THIS SLIDE LEFT INTENTIONALLY BLANK

THIS SLIDE LEFT INTENTIONALLY BLANK

Early Prototypes

Branden Pacer

43

Joystick High Fidelity Concepts:

Single-spring, ball joint— a ball in a socket with a single spring below to keep the neutral position upright

- The design is simpler to construct and easier to support from downward forces of pilot's hand
- Much harder to measure the joystick position with sensors

Joystick High Fidelity Concepts:

- Multi-plane gimbal— two-piece gimbal with axels connected to rotary sensors with individual springs to keep the neutral position upright
- This requires more intricate pieces to construct but is identical to the actual construction in an F-35 jet
- Linkages make it easier to measure position

Branden Pacer

45

Throttle High Fidelity Concepts:

Multiple, tube rails— the throttle handle will slide along two parallel rails

- This concept was considered in order to resist the risk of torque damage and instability that a single tube rail would have
- Requires a lot of "from-scratch" design work on the cart and its bearings

Branden Pacer

46

Throttle High Fidelity Concepts:

Single, rectangular rail— the throttle handle will slide along a single rail with ball bearings in the grooves

This concept is very high-strength and the construction eliminates concerns of torque damage and excessive wear

It is pre-manufactured and low cost

Throttle Position Concepts:

Gears: rack and pinion— the sensor would be attached to a rack and pinion to actuate it when the throttle is moved

This concept is very simple and durable

Throttle Position Concepts:

Belt actuated— the sensor would be attached to a pulley with a belt around it which is fixed to the cart, moving with the throttle handle

This concept is could be tricky to design from scratch and requires more maintenance and adjustable tensioning

Branden Pacer

49

Sensor High Fidelity Concepts:

Rotary Hall Effect— measures the strength of a magnetic field from a permanent magnet which moves inside

- Because the sensor doesn't rely on mechanical contact, it has a longer lifespan
- The sensors cost more

Sensor High Fidelity Concepts:

Potentiometer— contains a wound resistive element and a wiper contact which moves along the element providing a variable level of resistance

They are very low cost, standard, and easy to implement

Microcontroller Options Individual controllers Common controller

Branden Pacer

Department of Mechanical Engineering

52

Printed Circuit Board Schematic

Jonah Gibbons

PCB Validation

Electric Test Report \rightarrow Insulation Resistance - 20 M Ω Solderability Test Report → 245 +/- 5 °C for 3-5 seconds Thermal Stress Test Report → 288 +/- 5 °C for 10 seconds

- Joystick:
 - ----- Multiplane gimbal
 - 🛶 Ball joint
 - Linkages
- Throttle:

 - Belt system
- RPS:

Preliminary Sketches

Emelia Rodriguez

Concept Selection Process

Branden Pacer

56

Binary Pairwise Comparison

	1	2	3	4	5	6	7	8	9	Total	IWF
1. Cheap to manufacture	-	1	0	1	0	1	0	1	1	5	4
2. Fits into desk and cockpit model	0	-	0	0	0	1	0	1	1	3	2
 Equipment fully integrated with Prepar3D 	1	1	-	1	0	1	1	1	1	7	5
4. Will be able to simulate flying a box	0	1	0	-	0	1	0	1	1	4	3
5. Complete, polished prototype	1	1	1	1	-	1	1	1	1	8	5
6. Components provide appropriate resistance	0	0	0	0	0	-	1	1	0	2	2
7. Provides accurate in-flight feel for F-35	1	1	0	1	0	0	-	1	0	4	3
8. Lower mechanical complexity	0	0	0	0	0	0	0	-	1	1	1
9. Withstand vigorous use	0	0	0	0	0	1	1	0	-	2	2
Total	3	5	1	4	0	6	4	7	6	n-1=8	

House of Quality

	Improvement	•		1						^
HoQ	direction		↓			•	. ↓	. ↓	•	
	Units	psi	S	•	lbs	\$	integer	in	hours	·
Customer Requirements	IWF	Material stength	Latency	Accuracy of position sensing	Applied resistance	Cost of Materials	Number of parts	Deviation from given dimensions	Time to complete	Aesthetics
Cheap to manufacture	4	1				9			1	
Fits into desk and cockpit model	2						1	9		
Equipment fully integrated with Prepr3D	5		9	9						
Will be able to simulate flying a box	3		3	9						
Complete, polished prototype	5								3	9
Components provide appropriate resistance	2	3			9					
Provides accurate in-flight feel for F-35	3		3	9	9			1		
Lower mechanical complexity	1						9			
Withstand vigorous use	2	9			3					
Raw Score (373)		28	63	99	51	36	11	21	19	45
Relative Weight %		7.5	16.9	26.5	13.7	9.7	2.9	5.6	5.1	12.1
Rank Order		6	2	1	3	5	9	7	8	4

William Rickles

Pugh Chart

Soloction Critoria	Datum				Con	cepts			
Selection Criteria	Current LM F35 Sim "Wraith"	1	2	3	4	5	6	7	8
Accuracy of Position Sensing		-	+	-	+	-	-	-	-
Latency		+	+	-	-	+	+	-	-
Applied Resistance		-	-	-	+	-	+	-	+
Aesthetics		+	-	S	S	+	-	S	S
Cost of Materials		+	+	+	+	+	+	+	+
Material Strength		-	-	-	-	-	-	-	-
# of pluses		3	3	1	3	3	3	1	2
# of minuses		4	3	4	2	4	3	4	3

Concept	electrical	throttle	joystick	rps
1	hall & individual	single	ball	use existing
2	hall & individual	single	gimbal	use existing
3	hall & common	single	ball	use existing
4	hall & common	multi	gimbal	use existing
5	pot & individual	single	gimbal	use existing
6	pot & individual	multi	gimbal	use existing
7	pot & common	single	gimbal	use existing
8	pot & common	multi	gimbal	use existing

William Rickles

FAMU-FSU Engineering

Pugh Chart

Soloction Critoria	Datum	Concepts					
	Past year projects	1	2	4	5	6	8
Accuracy of Position Sensing		-	+	+	+	+	+
Latency		+	+	+	+	+	+
Applied Resistance		S	+	+	+	+	+
Aesthetics		-	-	+	-	-	+
Cost of Materials		-	-	-	-	-	-
Material Strength		+	+	+	+	+	+
# of pluses		2	4	5	4	4	5
# of minuses		3	2	1	2	2	1

Concept	electrical	throttle	joystick	rps
1	hall & individual	single	ball	use existing
2	hall & individual	single	gimbal	use existing
3	hall & common	single	ball	use existing
4	hall & common	multi	gimbal	use existing
5	pot & individual	single	gimbal	use existing
6	pot & individual	multi	gimbal	use existing
7	pot & common	single	gimbal	use existing
8	pot & common	multi	gimbal	use existing

Pugh Chart

Selection Critoria	Datum			Concepts					
Selection Criteria	Logitech pro flight	2	4	5	6	8			
Accuracy of Position Sensing		+	+	S	S	S			
Latency		S	-	S	S	-			
Applied Resistance		+	+	+	+	+			
Aesthetics		S	+	S	S	+			
Cost of Materials		-	-	+	S	S			
Material Strength		-	-	-	-	-			
# of pluses		2	3	2	1	2			
# of min	uses	2	3	1	1	2			

Concept	electrical	throttle	joystick	rps
1	hall & individual	single	ball	use existing
2	hall & individual	single	gimbal	use existing
3	hall & common	single	ball	use existing
4	hall & common	multi	gimbal	use existing
5	pot & individual	single	gimbal	use existing
6	pot & individual	multi	gimbal	use existing
7	pot & common	single	gimbal	use existing
8	pot & common	multi	gimbal	use existing

William Rickles

61

AHP Tables Targets

	Accuracy of	Applied			Cost of	Matorial	Deviation
[C]	Position	Latency	Posistanco	Aesthetics	Matorials	Strongth	from Given
	Sensing		Resistance		Waterials	Strength	Dimensions
Accuracy of Position Sensing	1.000	1.000	5.000	3.000	3.000	7.000	9.000
Latency	1.000	1.000	3.000	3.000	1.000	5.000	5.000
Applied Resistance	0.200	0.333	1.000	1.000	1.000	5.000	7.000
Aesthetics	0.333	0.333	1.000	1.000	1.000	5.000	5.000
Cost of Materials	0.333	1.000	1.000	1.000	1.000	5.000	7.000
Material Strength	0.143	0.200	0.200	0.200	0.200	1.000	1.000
Deviation from Given Dimensions	0.111	0.200	0.143	0.200	0.143	1.000	1.000
Sum	3.121	4.067	11.343	9.400	7.343	29.000	35.000

Norm[C]	Accuracy of Position Sensing	Latency	Applied Resistance	Aesthetics	Cost of Materials	Material Strength	Deviation from Given Dimensions	Critera Weights {W}	Rank
Accuracy of Position Sensing	0.320	0.246	0.441	0.319	0.409	0.241	0.257	0.319	1
Latency	0.320	0.246	0.264	0.319	0.136	0.172	0.143	0.229	2
Applied Resistance	0.064	0.082	0.088	0.106	0.136	0.172	0.200	0.121	4
Aesthetics	0.107	0.082	0.088	0.106	0.136	0.172	0.143	0.119	5
Cost of Materials	0.107	0.246	0.088	0.106	0.136	0.172	0.200	0.151	3
Material Strength	0.046	0.049	0.018	0.021	0.027	0.034	0.029	0.032	6
Deviation from Given Dimensions	0.036	0.049	0.013	0.021	0.019	0.034	0.029	0.029	7
Sum	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	

Francisco Lopez

AHP Tables Targets

	Consistency Check								
Weighted Sum Vector	Critoria Maights (M)	Consistency Vector							
{Ws}		{Ws}./{W}							
2.447	0.319	7.671							
1.724	0.229	7.537							
0.893	0.121	7.359							
0.878	0.119	7.361							
1.088	0.151	7.212							
0.230	0.032	7.194							
0.205	0.029	7.123							
		λ= 7.351							

CL= 0.058	
RI=1.35	
CR= 0.043	
	_

CR<0.1:)

$CI = \frac{\lambda - n}{n - 1}$	CR= CI RI	n= 7
----------------------------------	--------------	------

Francisco Lopez

AHP Tables Accuracy

[C]	2	5	8
2	1.00	5.00	5.00
5	0.20	1.00	1.00
8	0.20	1.00	1.00
Sum	1.40	7.00	7.00

Norm[C]	2	5	8	Criteria Weights {W}
2	0.714	0.714	0.714	0.714
5	0.143	0.143	0.143	0.143
8	0.143	0.143	0.143	0.143
Sum	1.000	1.000	1.000	1.000

CI=	0
RI=	0.5

CR= 0

Consistency Check				
Weighted Sum Vector	Maights (M)	Consistency Vector		
{Ws}		{Ws}./{W}		
2.14	0.71	3.00		
0.43	0.14	3.00		
0.43	0.14	3.00		
		λ= 3.00		
$CI = \frac{\lambda - n}{n - 1}$	CR= CI RI	n= 3		

0 <0.1

Francisco Lopez

AHP Tables Latency

[C]	2	5	8
2	1.00	0.33	7.00
5	3.00	1.00	7.00
8	0.14	0.14	1.00
Sum	4.14	1.48	15.00

Norm[C]	2	5	8	{W}
2	0.241	0.226	0.467	0.311
5	0.724	0.677	0.467	0.623
8	0.034	0.097	0.067	0.066
Sum	1.000	1.000	1.000	1.000

Consistency Check			
{Ws}	{W} {Ws}./{W}		
0.981	0.311	3.150	
2.018	0.623	3.241	
0.199	0.066	3.022	
	λ= 3.138		

$CI = \frac{\lambda - n}{n - 1}$	CR= CI RI	n= 3
----------------------------------	--------------	------

Francisco Lopez

Department of Mechanical Engineering

CI= 0.069019 RI= 0.52 CR= 0.132728

AHP Tables Cost of Materials

[C]	2	5	8
2	1.00	0.14	0.20
5	7.00	1.00	3.00
8	5.00	0.33	1.00
Sum	13.00	1.48	4.20

Norm[C]	2	5	8	{W}
2	0.077	0.097	0.048	0.074
5	0.538	0.677	0.714	0.643
8	0.385	0.226	0.238	0.283
Sum	1.000	1.000	1.000	1.000

		Check			
	{Ws}	{W}	{Ws}./{W}		CI= 0.032756
	0.222	0.074	3.013		RI= 0.52
	2.008	0.643	3.121		CR= 0.062992
	0.866	0.283	3.062		
		λ=	3.066		0.06<0.1 :)
CI-	<u>λ-n</u>	CR-	<u>CI</u>	n- 3	
01-	n-1	CN-	RI	11- 5	

Francisco Lopez

66

AHP for the targets resulted in the following data

Criteria	{W}	Rank
Accuracy of Position Sensing	0.319	1
Latency	0.229	2
Applied Resistance	0.121	4
Aesthetics	0.119	5
Cost of Materials	0.151	3
Material Strength	0.032	6
Deviation from Given Dimensions	0.029	7
	CR=0.043	

Accuracy of position sensing AHP

Concept	{W}	Rank
2	0.71	1
5	0.14	2
8	0.14	2
	CR=0	

Latency AHP

Concept	{W}	Rank
2	0.311	2
5	0.623	1
8	0.066	3
CR=0.133		

Cost of Materials AHP

[C]	{W}	Rank
2	0.074	3
5	0.643	1
8	0.283	2
CR=0.063		

